Guide for Plant Appraisal, 10 ${ }^{\text {th }}$ Edition (Second Printing) ${ }^{\diamond}$ Worksheets That Don’t Work ${ }^{\square}$

```
P.84. Repair Method - Direct Cost Technique
    Sheet 2 Overview
    Sheet 3 Annotated
    Sheet 4 Corrected & a Worked Example
P.86. Functional Replacement Method - Trunk Formula Technique
    Sheet 5 Overview
    Sheet 6 Annotated
    Sheet 7 Corrected
    Sheet }8\quad\mathrm{ Worked Example 4b, p. }7
    Sheet }9\quad\mathrm{ Worked Example 7, p. }8
    Sheet 10 Worked Un-Numbered Example (same size, different species)
```

None Reproduction Method - Direct Cost Technique
Sheet 11 Overview
Sheet 12 Worked Example 2b, p. 75.
None Functional Replacement Method - Direct Cost Technique
Sheet 11 Overview
Sheet 12 Worked Example 2a, p. 74 .
${ }^{\diamond}$ All page references are to Guide for Plant Appraisal, 10th Edition (second printing), unless otherwise noted.

Repair [Cost] Method - Direct Cost Technique

The Repair [Cost] Method is described on p. 55 and this Worksheet is on p. 84 .
P. 55 "Repair cost is used when there is damage to a plant or other landscape feature and the assignment focuses on correcting the damage or mitigating the losses. Application requires two assumptions: 1) the item will remain in place; and, 2) it will continue to provide benefits similar to those prior to damage."

Thus, because the Repair Method addresses partial (rather than total) damage or loss, the Repair Method does not develop a cost for a substitute Reproduction or Replacement plant.

The Direct Cost Technique (DCT), described on p. 56 and p.57, "totals the cost of plants, services, or other materials needed to repair, reproduce, or functionally replace the item."

The Repair Method worksheet on p .84 is effectively unworkable because Lines 6-11 a) develop and b) depreciate a cost for a "Replacement Tree." This is confusing and distracting to the appraiser since the Repair Method, by definition, only makes repairs. The appraiser would have to recognize the conceptual worksheet error and ignore Lines 6-11. This would also be confusing to the intended user(s) of the appraisal.

Incidentally, the worksheet is not clear if the "replacement tree" cost would be a Reproduction Cost or a Functional Replacement Cost. Additionally, the $10^{\text {th }} \mathrm{Ed}$. provides no guidance on whether or when Repair Costs are adjusted for depreciation.

These problems are identified and partially corrected on the following sheets and a worked (single tree only) example is provided. Even corrected, the worksheet cannot accommodate more than a single tree and cannot accommodate description of various repair items; additional sheets are required.

ANNOTATED
 Repair Method
 Direct Cost Technique

Subject Tree	
Species	
1. Trunk diameter* ${ }^{*}$ ($)$	
2. Cross-sectional area $(\text { line } 1)^{2} * 0.7854=$	in^{2}
3. Condition rating	\%
Health	
Structure	
Form	
4. Functional limitations	\%
5. External limitations	\%

Subject Tree is the Appraised Tree
Species

1. Trunk diameter* ${ }^{\star}(\mathrm{D}$ \qquad)
2. Cross-sectional a

Health
\qquad Form
\qquad $\%$
$\%$

Replacement tree

6. Purchase price
7. Depreciated purchase cost ${ }^{\ddagger}$ (line $6 x$ line $3 x$ line $4 x$ line 5)
8. Installation \qquad
9. Site preparation
10. Afterecare
\qquad
11. Subtotal, subject tree (line 6 or $7+$ line $8+$ line $9+$ line 10

The Repair Method addresses partial damage or loss. There is no replacemen or reproduction (p.55).

The numbering sequence will be preserved

\left.| Other Items | |
| :--- | :--- |
| 12. | Turf |$\right)$

[^0]\square These are Repair Items. They are not "other than" replacement.
12. Turf
14. Clean-up
15. Repair
6. Aftercare
8. Subtotal, other items (lines $12+13+14+15+16+17)$

Since there is no Replacement total at Line 11, Total Repair Cost is simply Line 18
© ERRORS are limited to conceptual and methodological flaws and exclude cosmetic issues.

CORRECTED

Repair Method

Direct Cost Technique \qquad
Client Name \qquad E-mail
Phone
Address From Appraisal Contact Information Form, p. 154.

Subject TreeSpecies \quad From Appraisal Field Data Sheet, p. 155.	in^{2}
1. Trunk diameter*(D) @	
2. Cross-sectional area $(\text { line } 1)^{2 *} 0.7854=$	
3. Condition rating	\%
Health	
Structure	
Form	
4. Functional limitations	\%
5. External limitations	\%
See note ${ }^{\ddagger}$	

Replacement tree
6. Purchase price
7. Depreciated purchase cost
8. Installation
9. Site preparation
10. Afterecare
11. Subtotal, replacement tree

There are no replacement or reproduction costs in the Repair Method

Repair Items	
12. Turf	\$
13. Hardscape	\$
14. Clean-up	\$
15. Repair	\$
16. Aftercare	\$
17. Other	\$
18. Subtotal, other items (lines $12+13+14+15+16+17$)	\$
Total repair cost (from line 18)	\$

[^1]Example 1, p. 73 (single oak tree only).
Repair Method
Direct Cost Technique
Client Name \qquad Date \qquad Case \#

Phone \qquad E-mail

Address \qquad From Appraisal Contact Information Form, p. 154

Subject Tree

Species
Oak (Quercus sp.)

1. Trunk diameter*(D) 16 inch 4.5 feet
2. Cross-sectional area $(\text { line } 1)^{2} * 0.7854=$
3. Condition rating \qquad
Health
Structure
Form
4. Functional limitations \qquad - \%
5. External limitations \%
See note ${ }^{\ddagger}$
Replacement tree
6. Purchase price
7. Depreciated purchase cost
8. Installation
9. Site preparation
10. Afterecare
11. Sulbtotall, replacement tree

There are no replacement or reproduction costs in the Repair Method

Repair Items

12. Turf
13. Hardscape
14. Clean-up
15. Repair_ \#6 remove loose damaged bark from the oak tree
16. Aftercare \#9 pest management for the oak tree.
the oak tree.
17. Other_\#10-11 soil analysis, fertilizer, mulch for the oak tree.
18. Subtotal, other items (lines $12+13+14+15+16+17$)

Total repair cost (from line 18)

\$	
\$	
\$	
\$	175.00
\$	275.00
\$	350.00
\$	800.00
	800.00

[^2]
Functional Replacement [Cost] Method - Trunk Formula Technique

The Functional Replacement [Cost] Method is described on p. 55 and this Worksheet is on p.86.
P. 55 "Functional replacement is the cost of substitute items that provide equivalent utility, benefits, or function, rather than the cost to produce an exact replica... For instance, a reasonable replacement...may be a similarly sized tree of a different species, a smaller tree of the same species, [or] several smaller trees..." Glossary p. 158 "Functional replacement: (Ch. 5) The production of a copy of an existing item that has the same functional utility and is updated to current standards with deficiencies and superadequacies removed."

Thus, according to the Glossary and appraisal theory, functional replacement reflects a loss in benefit or utility in the subject, i.e., depreciation. But $10^{\text {th }}$ Edition text, confusingly allows functional replacement with the same benefits as reproduction, i.e., without depreciation.

The Trunk Formula Technique (TFT), described on p.57, "...extrapolates the costs to purchase the largest commonly available nursery plant [or tree, LCANT] to the size of the plant being appraised," "or a smaller tree [p.58]" using a Unit Tree Cost (described on p. 57 and p. 61).

When the Functional Replacement Tree is larger than the LCANT, the cost of the Functional Replacement Tree is unknown and TFT is used to develop the cost of the Functional Replacement Tree. If the cost of the Functional Replacement Tree was known, the Direct Cost Technique (DCT), described on p. 56 and p.57, would be used.

The worksheet on p .86 is unworkable because a) it attempts to use the unknown Functional Replacement Tree cost to solve for the unknown Functional Replacement Tree cost, b) it attempts to use the unknown Functional Replacement Tree cost to solve for the Unit Tree Cost, c) Unit Tree Cost is actually developed from the LCANT cost, which is not provided for on the worksheet, and d) the worksheet does not provide for the number of Subject Trees or Functional Replacement trees. Additionally, the $10^{\text {th }}$ Edition provides inadequate guidance on when additional depreciation through \%age ratings is appropriate in the Functional Replacement [Cost] Method.

These problems are identified and corrected on the following sheets and worked examples are provided.

ANNOTATED

Functional Replacement Method FRM Trunk Formula Technique TFT

Client Name		Case \#	From Appraisal Contact Information Form, p. 154.
Phone	E-mail		
Address			

Subject Tree Species	$\begin{array}{r} i^{2} \\ - \\ -\% \end{array}$		Subject Tree is the Appraised Tree (it is not the Functional Replacement Tree - FRT) From Appraisal Field Data Sheet, p. 155 (both worksheet and form neglect number of trees)
1. Trunk diameter* $\left.{ }^{*} \mathrm{D}\right)$			
2. Cross-sectional area $(\text { line } 1)^{2} * 0.7854=$			Line 2 is Subject Tree size.
3. Condition rating			Lines 3-5 are developed for the Subject Tree, but would be applied at
Structure			Line 11 to the Functional Replacement Tree, if appropriate ${ }^{\ddagger}$. But FRM
Form			reduces or eliminates the need for depreciation (p.55, $\mathbb{4}$).
4. Functional limitations	\%		What is the risk of "double dipping" and excess depreciation? Textual
5. External limitations	\%		guidance is inadequate

Functional Replacement tree
Utility or benefit to be replaced __
Replacement plan _-
Species
6. Size (specify diameter or height)
7. If diameter, cross sectional area (line 6$)^{2} \times 0.7854=$
8. Functional replacement tree cost Source:

FRT (not the Subject Tree or the LCANT ${ }^{\dagger}$) P. 55 "...a reasonable replacement for a damaged... tree... may be a similarly sized tree of a different species, a smaller tree of the same species, several smaller trees..."

Lines 6 and 7 are $\underline{F R T}$ size* (neglects number of trees, e.g. Example 7, p.82). This worksheet uses TFT (p.57) because FRT cost is unknown. If FRT cost was known DCT (p.56) would be used (as in Example 2a, p.74). The unknown cannot be used to solve for the unknown!

Calculations

9. Unit tree cost (line 8 / line 7 or RPAC) TFT always relies on the unit cost developed from the LCANT ${ }^{\dagger}$ (p. 57 \& p. 59 sidebar) or
10. Basic functional replacement cost (line $2 \times$ line 9)
\qquad $\$$
 size* or the unknown FRT cost.
Basic functional replacement cost is developed from FRT size* (Line 6 or 7 not Line 2) and [LCANT ${ }^{+}$based] unit tree cost (Line 9). See Example 4b, p. 78 \& Example 7, p. 82. Using Line 2 here may incorrectly develop a Reproduction Cost for the Subject Tree. What is the risk of "double dipping" and excess depreciation?

Additional costs

Clean-up

Replacement tree installation
$\$$ \qquad
\qquad
\qquad
\qquad
$\$$
\$ \qquad
13. Total, functional replacement cost (line $11+$ line 12)
\qquad Additional Costs are after depreciation.

After care \qquad
-
\qquad provided by the RPAC ${ }^{\vee}$ (p. 57 \& Appendix 4). Unit tree cost is not developed from FRT

Hardscape (specify) Or other landscape This would be only the LCANT ${ }^{+}$installation cost (e.g. Example 4b, p.78) and assumes an installed unit cost is not used in order to conform with p. 58.
Line 13 is consistent with Example 4b, p. 78 \& Example 7, p. 83 but conceptually flawed and inconsistent with the Glossary, p.158. Lines 9 \& 10 report the functional replacement cost of a substitute for the appraised subject. Additional costs (Line 12) are not FRT costs. Line 13 should be Total Costs.

* diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate.
\ddagger Apply depreciation if it is appropriate for the assignment.

ERRORS are limited to conceptual and methodological flaws and exclude cosmetic issues.
† LCANT = Largest Commonly Available Nursery Tree (p. 57 ๆ 6 \& Appendix 4).
RPAC = Regional Plant Appraisal Committee.

CORRECTED

Functional Replacement Method FRM

Trunk Formula Technique

TFT

| Client Name | E-mail | Date _____ Case \#__ |
| :--- | :--- | :--- | :--- |
| Phone | | |
| Address | | |

From Appraisal Contact Information Form, p. 154

Address

Subject Tree		
Species		in^{2}
1.a Trunk diameter*(D) @	1b. Number of Trees ${ }^{\boldsymbol{\Delta}}$	
2. Cross-sectional area (line 1$)^{2} * 0.7854=$		
3. Condition rating		\%
Health		
Structure		
Form		
4. Functional limitations		\%
5. External limitations		\%

Functional Replacement tree
Utility or benefit to be replaced
Replacement plan \qquad
Species \qquad
6. a Size (specify diameter or height) ___ 6b. Number of Trees \triangle
7. If diameter, cross sectional area $(\text { line } 6 a)^{2} \times 0.7854=\quad$ in 2

From Appraisal Field Data Sheet, p. 155
 1a. Use Imperial or SI (metric) units as appropriate.
 \qquad

1b. Number of trees may be needed (see, e.g., Example 7, p.82). See Note ${ }^{\boldsymbol{4}}$.
1b. Number of trees may be needed (see, e.g., Example 7, p.82). See Note.

Calculations

8. LCANT † a. Specie \qquad b. Size* \qquad c. Trunk Area \qquad d. Cost \$ \qquad
9. Unit tree cost (line $8 \mathrm{~d} /$ line 8 b or 8 c) or from RPAC. \qquad \$ \qquad
10. Basic functional replacement cost ((line 6a or line $7 \times$ line 9$) x$ line 6b) $\$$ \qquad
11. Depreciated functional replacement cost (line $10 \times$ line $3 \times$ line $4 \times$ line 5) \ddagger \qquad
\square Data grouped in corrected Line 8 to preserve worksheet layout. See Lines 9-11 in the worksheet on p. 85.

Number of trees may be needed (see, e.g., Example 7, p.82)

Additional costs

Clean-up
Replacement tree installation
Aftercare
Hardscape or Landscape (specify) \qquad
\qquad
12. Total additional costs
13. Total Costs (line $11+$ line 12)

14. Rounded

line $11+$ line 12)
a, volume, or height as appropriate
\ddagger Apply depreciation if it is appropriate for the assignment. \qquad $10^{\text {TH }}$ Ed. P. 86 (Second Printing)
\dagger LCANT = Largest Commonly Available Nursery Tree
If size, species, depreciation ratings, and installation cost are the same for all trees. Otherwise complete separate worksheets.
\qquad

Lines 10 \& 11 report FRT cost of a substitute for the appraised subject. Additional costs (Line 12) are not FRT costs.

Corrected

Functional Replacement Method
 Trunk Formula Technique

Client Name \qquad E-mail \qquad Date \qquad Case \# \qquad

Example 4b, p. 78

A single subject tree, functionally replaced with a single, smaller tree of the same species.

Phone \qquad \square

Address From Appraisal Contact Information Form, p. 154.

Subject Tree

Species Red oak (Quercus rubra)

1. a Trunk diameter* ${ }^{*}$ (D)
@ 4.5 ft .
1b. Number of Trees $\boldsymbol{1}$
\qquad in^{2} $i n^{-}$
\qquad $\%$
2. Condition rating

Health Not specified in Example 4, assume the appraiser used the Structure intuitive option as on p.49.
Form
4. Functional limitation \qquad 75%
5. External limitations \qquad
Utility or benefit to be replaced The appraiser determines a 24 inch tree will
Replacement plan \qquad provide the same benefits.
Species Red Oak (Quercus rubra) \qquad
6.a Size (specify diameter or height) \qquad 6b. Number of Trees \triangle \qquad in^{2} A single, smaller functional replacement tree of the same species.
7. If diameter, cross sectional area (line $6 a)^{2} \times 0.7854=$
= \qquad

Calculations

8. LCANT † a. Species_ Q.r. b. Size* 5 inct. Trunk Area_19.6"a. Cost \$ 875
9. Unit tree cost (line $8 \mathrm{~d} /$ line 8 b or 8 c) or from RPAC. $\$ \underline{44.56}$
10. Basic functional replacement cost ((line 6a or line $7 \times$ line 9$) x$ line 6b) \qquad
\qquad LCANT based unit cost is constant in Examples 4a and 4b. Unit cost is not FRT based.
11. Daic functional replacement cost ((1ne 6ar ine $7 \times$ 人 \times)

The appraiser determines that additional depreciation is not appropriate
for the assignment.

Additional costs

ronal
Replacement tree intall \qquad \$3,000
Replacement tree installation \qquad 300
Aftercare \qquad
\square
12. Total additional costs
$\$ 600$
$\$$
$\$ 3,900$
13. Total Costs
(line $11+$ line 12)
$\$ \underline{24,160}$
\$ 24,160
14. Rounded

* diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate.

\ddagger Apply depreciation if it is appropriate for the assignment.

$$
10^{\text {th }} \text { Ed. P. } 86 \text { (CORRECTED) }
$$

\dagger LCANT = Largest Commonly Available Nursery Tree
There are slight differences between calculated figures and the Example figures. Example 4b mistakenly says \$20,060
© If size, species, depreciation ratings, and installation cost are the same for all trees. Otherwise
complete separate worksheets.

Corrected

 Trunk Formula Technique

 Functional Replacement Method}

 Functional Replacement Method
}

Client Name \qquad Date \qquad Case \#

Example 7, p. 82 (Pines Only)
Multiple subject trees, functionally replaced with fewer multiple trees of the same size and species.

To work the entire example an additional worksheet would be used for the azaleas.
Address
\qquad

Subject Tree

Species \square
1.a Trunk diameter ${ }^{\star}$ (D) 16 inch (average) @ 4.5 ft . 1b. Number of Trees ${ }^{\mathbf{4}} 12$
2. Cross-sectional area $(\text { line } 1)^{2} * 0.7854=$ in
3. Condition rating \qquad \%
Health Not specified in Example 7, assume the appraiser Structure determined that all depreciation was accomplished by using Form fewer functional replacement trees.
4. Functional limitations \qquad \%
5. External limitations \qquad \%

Functional Replacement tree

Utility or benefit to be replaced The appraiser determines that six trees will provide
Replacement plan \qquad the same benefits as 12 subject trees
Species Pines (Pinus sp.) \qquad 6b. Number of Trees ${ }^{\Delta} 6$
7. If $\overline{201}$
Calculations
3 in. (48 in. box)
8. LCANT † a. Species_P.sp. b. Size ${ }^{*}$ 个 c. Trunk Area 7^{722} d. Cost $\$ \underline{350}$
9. Unit tree cost (line $8 \mathrm{~d} /$ line 8 b or 8 c) or from RPAC.
$\$ 50.00$

Fewer multiple functional replacement trees of the same size and species. See Note ${ }^{\triangle}$
10. Basic functional replacement cost ((line 6a or line $7 \times$ line 9) x line 6b) $\$ 60,300$
\qquad he azalea worksheet would develop cost per unit crown volume. Example 2c, p. 77 (Reproduction Method) would develop cost per unit height.

LCANT based unit cost. Unit cost is not FRT based.
11. Depreciated functional replacement cost (line $10 \times$ line $3 \times$ line $4 x$ line 5) $\ddagger s \underline{60,300}$
$(201 \times \$ 50)=\$ 10,500 \times 6=\$ 60,300$.
The appraiser determines that additional depreciation is not appropriate for the assignment.

Additional costs

Clean-up
Replacement tree intallat
Aftercare
or Landscape (specify)
\qquad
$\left.\begin{array}{l}\$ 6,000 \\ \$ 1,800 \\ \$ 8800 \\ \$ 88,600\end{array}\right]$ $-\begin{aligned} & - \\ & - \\ & -\end{aligned}$ \qquad Example additional costs for pines only, to illustrate calculations. Installation cost
Hardscape or Landscape (specify) \qquad
\$8,600
13. Total Costs
(line $11+$ line 12)
$\$ \quad 68,900$
14. Rounded
\$ 69,000

* diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate.
\ddagger Apply depreciation if it is appropriate for the assignment.

$$
10^{\text {th }} \text { Ed. P. } 86 \text { (CORRECTED) }
$$

${ }^{\dagger}$ LCANT $=$ Largest Commonly Available Nursery Tree
© If size, species, depreciation ratings, and installation cost are the same for all trees. Otherwise

Corrected

 Trunk Formula Technique

 Functional Replacement Method}

 Functional Replacement Method
}

Un-Numbered Example, p. 57

A single subject tree, functionally replaced with a single tree of the same size but Client Nam \qquad Date \qquad Case \# different species (p. 55 "...may be a similarly sized tree of a different species...")

Phone \qquad E-mail -
\qquad

Address From Appraisal Contact Information Form, p. 154.

Subject Tree

Species \square
Red oak (Quercus rubra)

1. a Trunk diameter* ${ }^{\star}(\mathrm{D})$

Cross-sectional are (line 1) ${ }^{2 * 0.7854=}$1b. Number of Trees $\mathbf{1}$ \qquad
3. Condition rating
\square @ 4.5 ft .
$\overline{1,520} \mathrm{in}^{-}$
Condition rating \qquad
Health Not specified in Example 4, assume the appraiser used the Structure intuitive option as on p.49. Form
4. Functional limitations \qquad 75 \%
5. External limitations

80 \%

Functional Replacement tree

Utility or benefit to be replaced The $10^{\text {th }}$ Ed. provides no guidance as to why using a
Replacement plan \qquad different species is functional replacement.
Species Red Maple (Acer rubrum)
6. a Size (specify diameter or height) 44 inch 6 b . Number of Trees ${ }^{\mathbf{\Delta}} 1$
7. If diameter, cross sectional area $(\text { line } 6 \mathrm{a})^{2} \times 0.7854=1,520 \mathrm{in}^{2}$

Calculations Same

8. LCANT † a. Species_A.r._ b. Size* 5 inch c. Trunk Area_19.6"2 d. Cost $\$ 875$
9. Unit tree cost (line 8d / line 8 b or 8 c) or from RPAC. $\$ 44.56$
10. Basic functional replacement cost ((line 6a or line $7 \times$ line 9) x line 6b) $\$ \underline{67,731}$
11. Depreciated functional replacement cost (line $10 \times$ line $3 \times$ line $4 x$ line 5) $\ddagger \subseteq \underline{67,731}$

Lower

$5 \quad 600$
330.61 \$46,527 346,527

A single tree (size from Example 4b).

Glossary p.158: "Functional replacement: (Ch. 5) The production of a copy of an existing item that has the same functional utility and is updated to current standards with deficiencies and superadequacies removed."

Thus a functional replacement reflects a loss in benefit or utility in the subject, i.e., depreciation. It is unclear how developing a cost for a different species reflects depreciation.

A single functional replacement tree of the same size but different species.

If the unit tree cost is the same as for the subject species, then it is unclear why this is not a Reproduction Cost.

If the unit tree cost is lower than for the subject species, obviously the Functional Replacement Cost will be lower than the Reproduction Cost. But it is unclear why or how using a lower cost species reflects or corrects for a deficiency or superadequacy in the subject, i.e., depreciation.

Additional costs

Replacement tree intall
Aftercare \qquad
\qquad
\qquad $\$ 0.00$ Additional costs are neglected in this example for clarity.
12. Total additional costs

13. Total Costs (line $11+$ line 12) $\quad \$$| 14, 67,731 |
| :--- |
| 67,700 |$\$ 46,527$
14. Rounded \qquad \$ 46,500

* diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate.
\ddagger Apply depreciation if it is appropriate for the assignment.

$$
10^{\text {TH }} \text { Ed. P. } 86 \text { (CORRECTED) }
$$

\dagger LCANT $=$ Largest Commonly Available Nursery Tree
© If size, species, depreciation ratings, and installation cost are the same for all trees. Otherwise

Reproduction [Cost] Method \& Functional Replacement [Cost] Method - Direct Cost Technique (Missing Worksheets)

The Reproduction [Cost] Method is described on p.55. "Reproduction cost is the cost to replicate or duplicate the item being appraised."

The Functional Replacement [Cost] Method is described on p.55.
P. 55 "Functional replacement is the cost of substitute items that provide equivalent utility, benefits, or function, rather than the cost to produce an exact replica... For instance, a reasonable replacement...may be a similarly sized tree of a different species, a smaller tree of the same species, [or] several smaller trees..." Glossary p. 158 "Functional replacement: (Ch.5) The production of a copy of an existing item that has the same functional utility and is updated to current standards with deficiencies and superadequacies removed."

Thus, functional replacement reflects a loss in benefit or utility in the subject, i.e., depreciation.

The Direct Cost Technique (DCT), described on p. 56 and p.57, "totals the cost of plants, services, or other materials needed to repair, reproduce, or functionally replace the item."

The $10^{\text {th }}$ Edition (second printing) does not include worksheets for the Reproduction Method - DCT, or for the Functional Replacement [Cost] Method - DCT. Worksheets and worked examples are provided on the following sheets, and for consistency have followed the format and organization of other $10^{\text {th }}$ Edition worksheets, to the extent possible.

Reproduction Method Direct Cost Technique

Functional Replacement Method
 Direct Cost Technique

Client Name Mrs. Butler Date \qquad Case \# \qquad
Phone \qquad E-mail \qquad
Address Example 2b, p. 75.

Subject Tree

Species Arborvitae (Thuja occidentalis) hedge

1. a Trunk diamete**(D) 15 feet high @ na 1b. Number of Trees ${ }^{\Delta} 10$
2. Cross-sectional area $(\text { line } 1)^{2} * 0.7854=$
3. Cross-sectional ar

$$
85 \text { \% }
$$

Health Not specified in Example 2b, assume the \qquad - 85 \%

Structure appraiser used the intuitive option as on p.49.
Form
4. Functional limitations 100%
5. External limitations 100%

Reproduction tree

Species Arborvitae (Thuja occidentalis) hedge \qquad
6. Size* (specify diameter or height)_ 15 feet high
7. Basic reproduction tree cost (\$_400 x line 1b)
$\$ \quad 4,000$
Source_ Woody's Wholesale Warehouse
8. Depreciated reproduction $\cos ^{\ddagger}($ line $7 \times$ line $3 x$ line $4 x$ line 5) \qquad

Additional costs		
9. Cleanup	\$	400
10. Reproduction tree installation (\$_100_x line 1b)	\$	1,000
11. Aftercare __ PHC / IPM	\$	600
12. Other__Temporary irrigation		
	\$	150
13. Sub-total additional costs (line $9+$ line $10+$ line $11+$ line 12)	\$	2,150
14. Total reproduction cost (line $7+$ line 12)	\$	6,150
OR		
Total depreciated reproduction cost (line $8+$ line 12)	\$	5,550
15. Rounded	\$	5,600

[^3]* diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate,

Apply depreciation if it is appropriate for the assignment

- If size, species, depreciation ratings, and installation cost are the same for all trees. Otherwise complete separate worksheets.

[^0]: * diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate
 ${ }^{*}$ diameter and cross-sectional area may be replaced with plat.

[^1]: * diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate
 $\ddagger_{\text {Repair Costs are not typically depreciated. }}$

[^2]: * diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate. $\ddagger_{\text {Repair Costs are not typically depreciated. }}$

[^3]: * diameter and cross-sectional area may be replaced with plant area, volume, or height as appropriate
 $\Psi_{\text {Apply depreciation if it is appropriate for the assignment. }}$
 © If size, species, depreciation ratings, and installation cost are the same for all trees. Otherwise complete separate worksheets.

